Երկու անհայտով երկու առաջին աստիճանի հավասարումների համակարգեր․ Պարապմունք 4

Դիցուք տրված են x և y երկու անհայտներով առաջին աստիճանի գծային հավասարումներ՝ a1x+b1y+c1=0 և a2x+b2y+c2=0: Ասում են, որ տրված է  x և y երկու անհայտներով հավասարումների համակարգ, եթե պահանջվում է գտնել բոլոր այն (x;y) թվազույգերը, որոնք միաժամանակ բավարարում են և՛առաջին, և՛ երկրորդ հավասարումներին:

Համակարգի հավասարումները գրում են իրար տակ և միացնում են հատուկ նշանի՝ ձևավոր փակագծերի միջոցով.

(x;y) թվազույգը, որը հանդիսանում է միաժամանակ և՛ առաջին, և՛ երկրորդ հավասարումների լուծում, կոչվում է համակարգի լուծում:

Լուծել համակարգը նշանակում է գտնել նրա բոլոր լուծումները կամ ապացուցել, որ լուծումներ չկան:

Օրինակ

Հոր և որդու տարիքների տարբերությունը 25 է, իսկ գումարը՝ 35: Գտնել հոր և որդու տարիքները:

Լուծում: Պետք է գտնել երկու անհայտ մեծություններ՝ հոր և որդու տարիքները: Նշանակենք դրանք համապատասխանաբար x և y տառերով: Խնդրի պայմանները կարելի է արտագրել հետևյալ երկու հավասարումների միջոցով՝ x−y=25 և x+y=35

Որոնելի x և y թվերը պետք է բավարարեն միաժամանակ և՛ առաջին, և՛ երկրորդ հավասարումներին: Հետևաբար, ըստ վերևի սահմանման, ստանում ենք հավասարումների համակարգ՝

Այս համակարգի համար գտնում ենք x=30 և y=5 թվերը, որոնք բավարարում են համակարգի երկու հավասարումներին: Հետևաբար հայրը 30 տարեկան է, իսկ որդին՝ 5

Հարցեր և առաջադրանքներ։

1․ Ի՞նչն են անվանում երկու անհայտով երկու առաջին աստիճանի հավասարումների համակարգի լուծումը։

Հավասարումը, որտեղ a, b, c-ն տված թվեր են, ընդ որում a և b թվերից գոնե մեկը տարբեր է զրոյից, իսկ x-ը և y-ը անհայտներ են, անվանում են երկու անհայտով առաջին աստիճանի հավասարում:

2․ Ի՞նչ է նշանակում լուծել համակարգը։

Լուծել համակարգը նշանակում է գտնել նրա բոլոր լուծումները կամ ապացուցել, որ լուծումներ չկան։

3․ Ընտրել x+y=15 հավասարմանը բավարարող բնական թվերի զույգ:

  • (17;−2)
  • (0;15)
  • (−9;−6)
  • (−6;21)
  • (3;5)
  • (13;2)

4․ Ընտրել այն հավասարումը, որին բավարարում է (2;1) թվազույգը:

  • 15x−12y=3
  • 6x+8y=1
  • 7x+3y=10
  • 4x−3y=7
  • 6x−2y=4
  • 10x−11y=9

Leave a comment