
Եթե բազմանկյան բոլոր կողմերը շոշափում են շրջանագիծը, ապա շրջանագիծը կոչվում է այդ բազմանկյան ներգծյալ շրջանագիծ:
Ներգծված շրջանագծի կենտրոնը պետք է հավասարահեռ լինի բազմանկյան կողմերից, այսինքն լինի կիսորդների հատման կետում:
Եթե քառանկյան բոլոր կողմերը շոշափում են շրջանագիծը, ապա շրջանագիծը կոչվում է այդ քառանկյան ներգծյալ շրջանագիծ:
Ոչ բոլոր քառանկյուններն ունեն ներգծյալ շրջանագիծ, քանի որ՝ չորս անկյունների կիսորդները կարող են նույն կետում չհատվել:
Եթե քառանկյանը ներգծվել է շրջանագիծ, ապա քառանկյան հանդիպակաց կողմերի գումարները հավասար են՝ a+c=b+d:

Քառանկյան յուրաքանչյուր կողմ ներկայացնենք երկու հատվածների գումարի տեսքով՝ AB=AK+KB, BC=BL+LC, CD=CM+MD, և AD=DN+NA: Քանի որ, նույն կետից շրջանագծին տարված շոշափողների հատվածները հավասար են, ապա՝ AB+CD=BC+AD:
Այս հատկությունը կարելի է օգտագործել, որպես հայտանիշ, որի միջոցով կարելի է պարզել, թե ո՞ր քառանկյուններն ունեն ներգծյալ շրջանագիծ:
Փորձենք ուղղանկյանը ներգծել շրջանագիծ։Քանի որ ուղղանկյան հանդիպակաց կողմերի գումարը հավասար չէ,ապա չենք կարող ներգծել շրջանագիծ։

Եթե քառանկյան հանդիպակաց կողմերի գումարները հավասար են, ապա այդ քառանկյունն ունի ներգծյալ շրջանագիծ:
Քանի որ եռանկյան անկյունների կիսորդները հատվում են նույն կետում, ապա ցանկացած եռանկյուն ունի ներգծյալ շրջանագիծ:

Քանի որ, ցանկացած եռանկյան անկյունների կիսորդները հատվում են եռանկյան ներսում, ապա ներգծյալ շրջանագծի կենտրոնը միշտ գտնվում է եռանկյան ներսում:

Հարցեր և առաջադրանքներ
1․ Ո՞ր շրջանագիծն է կոչվում բազմանկյանը ներգծյալ։
Եթե բազմանկյան բոլոր կողմերը շոշափում են շրջանագիծը, ապա շրջանագիծը կոչվում է այդ բազմանկյան ներգծյալ շրջանագիծ:
2․ Քանի՞ շրջանագիծ կարելի է ներգծել տրված եռանկյանը:
1
3․GEOGEBRA ծրագրով գծիր եռանկյուն, ներգծիր եռանկյանը շրջանագիծ, նկարը ցույց տուր։

4․ Շրջանագծին արտագծած հավասարասրուն սեղանի հիմքերը հավասար են 4 սմ և 9 սմ։ Գտնել սեղանի պարագիծը։
2 ⋅ 9 + 4 =22
Պատ․՝ 22սմ